Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[bis(µ₂-4,4'-bipyridine)[µ₂-(2,4dichlorophenoxy)acetato]copper(I)] nitrate]

Shi-Zhu Liu

School of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China Correspondence e-mail: liushizhu521@126.com

Received 17 December 2009; accepted 18 January 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.049; wR factor = 0.143; data-to-parameter ratio = 13.1.

The title compound, $\{[Cu_2(C_8H_5Cl_2O_3)(C_{10}H_8N_2)_2]NO_3\}_n$ was prepared by reacting copper(II) nitrate with 4,4'-bipyridine (4,4'-bipy) and (2,4-dichlorophenoxy)acetic acid under solvothermal conditions. Each of two copper(I) atoms in the asymmetric unit is three-coordinated by two N atoms from two 4,4'-bipy ligands and one O atom from the (2,4-dichlorophenoxy)acetate ligand. As both ligands act as bridging ligands, a double-stranded chain structure is observed.

Related literature

For coordination polymers incorporating either 4,4'bipy or phenoxyacetato ligands and Cu(I) or Cu(II), see: Biswas *et al.* (2007); Bourne & Moitsheki (2007); Huang *et al.* (2008); Mo *et al.* (2009); Smith *et al.* (1981).

Experimental

Crystal data

 $[Cu_{2}(C_{8}H_{5}Cl_{2}O_{3})(C_{10}H_{8}N_{2})_{2}]NO_{3}$ $M_{r} = 721.5$ Monoclinic, $P2_{1}/c$ a = 10.598 (2) Å b = 18.552 (3) Å c = 15.212 (3) Å $\beta = 108.835$ (2)°

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.883, T_{max} = 0.935

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.143$ S = 1.045085 reflections $V = 2830.9 \text{ (8) } \text{Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.74 \text{ mm}^{-1}$ T = 296 K $0.15 \times 0.13 \times 0.08 \text{ mm}$

14129 measured reflections 5085 independent reflections 3787 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$

388 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.89$ e Å⁻³ $\Delta \rho_{min} = -0.68$ e Å⁻³

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge South China Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2172).

References

- Biswas, C., Chattopabhyay, S., Drew, M. G. B. & Ghosh, A. (2007). *Polyhedron*, **26**, 4411–4418.
- Bourne, S. A. & Moitsheki, L. J. (2007). J. Chem. Crystallogr. 37, 359-367.
- Bruker (2004). *APEX2* and *SMART*. Bruker AXS Inc, Madison, Wisconsin, USA.
- Huang, F.-P., Yu, Q., Bian, H.-D., Yan, S.-P. & Liang, H. (2008). *Polyhedron*, **27**, 3160–3166.
- Mo, J., Zhang, S.-M., Ge, W.-Z. & Liu, J.-H. (2009). J. Chem. Crystallogr. 39, 890–893.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1981). Inorg. Chim. Acta, 49, 53–55.

supplementary materials

Acta Cryst. (2010). E66, m199 [doi:10.1107/S1600536810002229]

Poly[[bis(μ_2 -4,4'-bipyridine)[μ_2 -(2,4-dichlorophenoxy)acetato]copper(I)] nitrate]

S.-Z. Liu

Comment

The design and synthesis of inorganic-organic composite coordination polymers exhibiting novel structures and properties is an intensively studied field of chemical research. 4,4'-bipyridine is a ligand that is particularly suited for constructing frameworks that possess hydrophobic pores and channels with potentially useful inclusion properties, including size and shape specificity (Bourne & Moitsheki, 2007; Huang *et al.*, 2008; Mo *et al.*, 2009; Biswas *et al.*, 2007). 2,4-Dichlorophenoxyacetato ligands have been described to act as bridging in ligands in a typical Cu(II) paddlewheel complex (Smith *et al.*, 1981).

The title compound (Fig. 1) was prepared from copper(II) nitrate, 4,4'-bipyridine (4,4'-bipy) and 2,4-dichlorophenoxyacetic acid under solvothermal conditions with ethanol most probably acting as the reducing agent for copper(II). A rufous colored block shaped crystal of the resulting copper(I) complex with a 2,4-dichlorophenoxyacetato ligand was characterized by single-crystal X-ray analysis. It reveals that each of two copper(I) centers is three-coordinated by two N atoms from two 4,4'-bipy ligands and one O atom from a bridging 2,4-dichlorophenoxyacetato ligand. The copper(I) coordination units are additionally connected by bridging 4,4'-bipy ligands, generating a one-dimensional polymeric chain structure (Fig. 2). A doubly stranded chain is observed due to the coordination of the copper(I) centers to one 2,4-dichlorophenoxyacetato ligand.

Experimental

A mixture of Cu(NO₃)₂ × 5 H₂O (0.121 g, 0.44 mmol), 4,4'-bipyridine × 2 H₂O (0.096 g, 0.5 mmol) and 2,4-dichlorophenoxyacetic acid (0.22 g, 1 mmol) in 8 ml of an ethanol/H₂O mixture (ν/ν 1/7) was stirred vigorously for 10 min and then sealed in a 25 ml teflon-lined stainless-steel autoclave. The autoclave was heated to 403 K for 2 days and was then slowly cooled to room temperature with a rate of 6 K/h. The product was collected by filtration, washed with water and air-dried. Rufous block shaped crystals suitable for X-ray analysis were obtained in *ca* 26.8% yield based on Cu.

Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to carbon were placed in geometrically idealized positions and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$ for H atoms of the aromatic rings.

Figures

Fig. 1. The asymmetric unit of the title compound, showing displacement ellipsoids at 50% probability for non-H atoms. Symmetry code: i 1 + x, 0.5 - y, 1/2 + z.

Fig. 2. A view of the one-dimensional polymeric chain structure of the title compound. Hydrogen atoms are omitted for clarity.

$Poly[[bis(\mu_2-4,4'-bipyridine)[\mu_2-(2,4-dichlorophenoxy)acetato]copper(I)]$ nitrate]

F(000) = 1456 $D_{\rm x} = 1.693 \text{ Mg m}^{-3}$

 $\theta = 1.8-25.2^{\circ}$ $\mu = 1.74 \text{ mm}^{-1}$ T = 296 KBlock, rufous

 $0.15 \times 0.13 \times 0.08 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 5085 reflections

Crystal data

$[Cu_2(C_8H_5Cl_2O_3)(C_{10}H_8N_2)_2]NO_3$
$M_r = 721.5$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 10.598 (2) Å
b = 18.552 (3) Å
c = 15.212 (3) Å
$\beta = 108.835 \ (2)^{\circ}$
$V = 2830.9 (8) \text{ Å}^3$
Z = 4

Data collection

Bruker APEXII area-detector diffractometer	5085 independent reflections
Radiation source: fine-focus sealed tube	3787 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
φ and ω scan	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.883, T_{\max} = 0.935$	$k = -19 \rightarrow 22$
14129 measured reflections	$l = -16 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.143$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.068P)^{2} + 4.0523P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5085 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
388 parameters	$\Delta \rho_{max} = 0.89 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.29363 (5)	0.27588 (3)	1.15749 (4)	0.04390 (19)
Cu2	0.48636 (5)	0.28270 (3)	1.03403 (4)	0.04604 (19)
N3	0.3225 (3)	0.2599 (2)	0.9378 (3)	0.0444 (9)
C22	0.0663 (4)	0.2425 (2)	0.8069 (3)	0.0394 (9)
C13	-0.0770 (4)	0.1880 (2)	1.0032 (3)	0.0499 (12)
H13	-0.1148	0.1422	0.9928	0.060*
C5	0.1398 (5)	0.5119 (2)	1.2023 (4)	0.0498 (11)
C12	-0.1511 (4)	0.2477 (2)	0.9594 (3)	0.0380 (9)
C24	0.2591 (4)	0.3141 (3)	0.8824 (3)	0.0466 (11)
H24	0.3019	0.3584	0.8882	0.056*
C10	0.0413 (4)	0.3181 (2)	1.0374 (3)	0.0451 (11)
H10	0.0815	0.3632	1.0486	0.054*
C11	-0.0874 (4)	0.3135 (2)	0.9796 (3)	0.0441 (10)
H11	-0.1327	0.3553	0.9535	0.053*
C14	0.0513 (4)	0.1966 (2)	1.0613 (3)	0.0495 (12)
H14	0.0979	0.1559	1.0900	0.059*
C20	0.2591 (5)	0.1964 (3)	0.9247 (4)	0.0559 (13)
H20	0.3024	0.1571	0.9596	0.067*

supplementary materials

C21	0.1331 (4)	0.1861 (3)	0.8623 (3)	0.0513 (12)
H21	0.0928	0.1411	0.8575	0.062*
C4	0.2570 (5)	0.5161 (2)	1.1810 (4)	0.0558 (13)
C3	0.3775 (6)	0.5171 (3)	1.2524 (5)	0.0752 (17)
H3	0.4569	0.5201	1.2390	0.090*
C7	0.3548 (5)	0.5004 (3)	1.0594 (4)	0.0619 (14)
H7A	0.4340	0.5263	1.0956	0.074*
H7B	0.3364	0.5135	0.9947	0.074*
C9	0.2614 (9)	0.5098 (3)	1.3627 (4)	0.086 (2)
C6	0.1390 (6)	0.5089 (3)	1.2928 (4)	0.0682 (15)
Н6	0.0596	0.5063	1.3063	0.082*
C2	0.3796 (8)	0.5138 (3)	1.3432 (5)	0.091 (2)
H2	0.4604	0.5143	1.3913	0.110*
N1	0.1127 (3)	0.26020 (19)	1.0789 (2)	0.0387 (8)
C8	0.3819 (4)	0.4199 (2)	1.0702 (3)	0.0429 (10)
02	0.3150 (3)	0.38364 (16)	1.1069 (2)	0.0532 (8)
01	0.2440 (3)	0.52203 (18)	1.0888 (3)	0.0606 (9)
C12	-0.01198 (13)	0.51063 (8)	1.11418 (11)	0.0687 (4)
C11	0.2599 (3)	0.50305 (12)	1.47790 (13)	0.1398 (10)
03	0.4707 (3)	0.39830 (17)	1.0396 (2)	0.0554 (9)
N6	0.2506 (5)	0.4773 (4)	0.7132 (5)	0.0851 (16)
C23	0.1347 (4)	0.3077 (2)	0.8176 (3)	0.0455 (10)
H23	0.0960	0.3470	0.7808	0.055*
C25	-0.0720 (4)	0.2359 (2)	0.7422 (3)	0.0376 (9)
C15	-0.2888 (4)	0.2414 (2)	0.8933 (3)	0.0357 (9)
C26	-0.1299 (4)	0.1708 (2)	0.7098 (3)	0.0484 (11)
H26	-0.0817	0.1284	0.7282	0.058*
C19	-0.3701 (4)	0.3011 (2)	0.8646 (3)	0.0473 (11)
H19	-0.3415	0.3458	0.8915	0.057*
C16	-0.3419 (4)	0.1766 (2)	0.8556 (3)	0.0469 (11)
H16	-0.2936	0.1343	0.8746	0.056*
C29	-0.1522 (4)	0.2960 (2)	0.7132 (4)	0.0563 (13)
H29	-0.1193	0.3414	0.7348	0.068*
C18	-0.4926 (4)	0.2953 (2)	0.7970 (3)	0.0475 (11)
H18	-0.5433	0.3368	0.7779	0.057*
C17	-0.4666 (4)	0.1739 (2)	0.7894 (3)	0.0505 (12)
H17	-0.5002	0.1292	0.7657	0.061*
C27	-0.2593 (4)	0.1678 (2)	0.6498 (3)	0.0512 (12)
H27	-0.2959	0.1229	0.6292	0.061*
C28	-0.2795 (5)	0.2893 (2)	0.6530 (4)	0.0547 (13)
H28	-0.3299	0.3309	0.6343	0.066*
N2	-0.5420(3)	0.3303 0.23224(18)	0.0315 0.7575(2)	0.0386 (8)
N4	-0.3348(3)	0.22657(18)	0.6199(3)	0.0413 (8)
06	0 2775 (8)	0.4203(3)	0 6898 (5)	0.161 (3)
05	0 1538 (8)	0 5055 (6)	0 6659 (6)	0.229(5)
04	0 3168 (8)	0 5019 (6)	0 7763 (9)	0.282(7)
<u> </u>	0.0100 (0)	0.0017 (0)	5.1105 (7)	0.202 (7)

Atomic displacement parameters	$(Å^2)$
--------------------------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0233 (3)	0.0560 (4)	0.0418 (3)	-0.0006 (2)	-0.0041 (2)	0.0028 (2)
Cu2	0.0269 (3)	0.0546 (4)	0.0474 (4)	0.0019 (2)	-0.0008 (2)	-0.0023 (3)
N3	0.0290 (18)	0.051 (2)	0.048 (2)	0.0013 (16)	0.0043 (16)	-0.0036 (18)
C22	0.028 (2)	0.047 (2)	0.039 (2)	-0.0007 (18)	0.0044 (18)	-0.0066 (19)
C13	0.037 (2)	0.040 (2)	0.059 (3)	-0.0082 (19)	-0.003 (2)	0.013 (2)
C5	0.056 (3)	0.036 (2)	0.057 (3)	0.007 (2)	0.017 (2)	0.003 (2)
C12	0.026 (2)	0.046 (2)	0.037 (2)	-0.0006 (17)	0.0030 (17)	0.0049 (19)
C24	0.032 (2)	0.052 (3)	0.050 (3)	-0.0088 (19)	0.005 (2)	-0.002 (2)
C10	0.028 (2)	0.045 (2)	0.052 (3)	-0.0045 (18)	-0.0022 (19)	0.000 (2)
C11	0.032 (2)	0.042 (2)	0.049 (3)	0.0026 (18)	0.0001 (19)	0.005 (2)
C14	0.032 (2)	0.046 (3)	0.058 (3)	0.0006 (19)	-0.003 (2)	0.017 (2)
C20	0.040 (2)	0.045 (3)	0.067 (3)	0.004 (2)	-0.004 (2)	-0.004 (2)
C21	0.035 (2)	0.046 (3)	0.058 (3)	0.0014 (19)	-0.005 (2)	-0.004 (2)
C4	0.056 (3)	0.036 (2)	0.069 (4)	0.011 (2)	0.012 (3)	0.007 (2)
C3	0.068 (4)	0.049 (3)	0.093 (5)	0.008 (3)	0.004 (3)	-0.003 (3)
C7	0.051 (3)	0.049 (3)	0.095 (4)	0.011 (2)	0.035 (3)	0.021 (3)
C9	0.142 (7)	0.045 (3)	0.061 (4)	0.021 (4)	0.022 (4)	-0.003 (3)
C6	0.091 (4)	0.041 (3)	0.072 (4)	0.014 (3)	0.026 (3)	0.004 (3)
C2	0.095 (5)	0.063 (4)	0.084 (5)	0.016 (4)	-0.015 (4)	-0.015 (3)
N1	0.0260 (17)	0.048 (2)	0.0352 (19)	-0.0029 (15)	0.0003 (14)	0.0045 (16)
C8	0.026 (2)	0.042 (2)	0.051 (3)	-0.0041 (18)	-0.0012 (19)	0.007 (2)
02	0.0466 (18)	0.0451 (18)	0.060 (2)	-0.0064 (14)	0.0066 (16)	0.0104 (15)
01	0.0492 (19)	0.058 (2)	0.079 (3)	0.0196 (16)	0.0269 (18)	0.0207 (18)
Cl2	0.0513 (7)	0.0733 (9)	0.0809 (10)	0.0034 (6)	0.0205 (7)	0.0069 (7)
Cl1	0.233 (3)	0.1117 (16)	0.0609 (11)	0.0612 (17)	0.0279 (14)	-0.0073 (10)
03	0.0343 (16)	0.0523 (19)	0.074 (2)	0.0030 (14)	0.0096 (16)	0.0018 (16)
N6	0.046 (3)	0.090 (4)	0.106 (5)	-0.011 (3)	0.006 (3)	-0.018 (4)
C23	0.034 (2)	0.049 (3)	0.046 (3)	-0.0027 (19)	0.0027 (19)	0.003 (2)
C25	0.030 (2)	0.044 (2)	0.037 (2)	-0.0019 (17)	0.0077 (18)	-0.0073 (18)
C15	0.0248 (19)	0.046 (2)	0.030 (2)	-0.0039 (17)	0.0005 (16)	0.0009 (18)
C26	0.033 (2)	0.039 (2)	0.063 (3)	0.0032 (18)	0.000 (2)	-0.003 (2)
C19	0.030 (2)	0.043 (2)	0.056 (3)	-0.0005 (18)	-0.003 (2)	-0.006 (2)
C16	0.035 (2)	0.040 (2)	0.049 (3)	0.0053 (18)	-0.010 (2)	0.001 (2)
C29	0.039 (2)	0.037 (2)	0.076 (4)	-0.0040 (19)	-0.006 (2)	-0.005 (2)
C18	0.031 (2)	0.044 (3)	0.057 (3)	0.0054 (18)	0.000 (2)	0.000 (2)
C17	0.042 (2)	0.043 (3)	0.050 (3)	-0.0029 (19)	-0.007 (2)	-0.005 (2)
C27	0.036 (2)	0.045 (3)	0.062 (3)	-0.005 (2)	0.001 (2)	-0.008 (2)
C28	0.041 (3)	0.042 (3)	0.068 (3)	0.003 (2)	-0.001 (2)	0.001 (2)
N2	0.0247 (16)	0.046 (2)	0.0380 (19)	0.0022 (14)	0.0003 (15)	-0.0057 (16)
N4	0.0308 (18)	0.045 (2)	0.042 (2)	-0.0016 (15)	0.0043 (16)	-0.0007 (16)
O6	0.190 (7)	0.083 (4)	0.160 (6)	-0.010 (4)	-0.012 (5)	-0.011 (4)
05	0.125 (6)	0.424 (16)	0.139 (7)	0.105 (8)	0.045 (5)	-0.002 (8)
O4	0.106 (6)	0.324 (14)	0.378 (15)	-0.042(7)	0.023 (7)	-0.232 (12)

Geometric parameters (Å, °)

Cu1—N2 ⁱ	1.913 (3)	С7—Н7А	0.9700
Cu1—N1	1.926 (3)	С7—Н7В	0.9700
Cu1—O2	2.180 (3)	С9—С2	1.379 (10)
Cu2—N3	1.922 (4)	С9—С6	1.387 (9)
Cu2—N4 ⁱ	1.931 (3)	C9—Cl1	1.762 (7)
Cu2—O3	2.155 (3)	С6—Н6	0.9300
N3—C20	1.339 (6)	С2—Н2	0.9300
N3—C24	1.344 (6)	C8—O2	1.235 (5)
C22—C21	1.387 (6)	C8—O3	1.243 (5)
C22—C23	1.393 (6)	N6	1.088 (9)
C22—C25	1.483 (5)	N6—O5	1.169 (8)
C13—C14	1.372 (6)	N6—O6	1.181 (8)
C13—C12	1.397 (6)	С23—Н23	0.9300
С13—Н13	0.9300	C25—C26	1.374 (6)
C5—C6	1.380 (7)	C25—C29	1.385 (6)
C5—C4	1.383 (7)	C15—C16	1.373 (6)
C5—C12	1.730 (5)	C15—C19	1.384 (6)
C12—C11	1.381 (6)	C26—C27	1.381 (6)
C12—C15	1.486 (5)	С26—Н26	0.9300
C24—C23	1.373 (6)	C19—C18	1.376 (6)
C24—H24	0.9300	С19—Н19	0.9300
C10—N1	1.348 (5)	C16—C17	1.379 (6)
C10—C11	1.366 (5)	C16—H16	0.9300
C10—H10	0.9300	C29—C28	1.370 (6)
C11—H11	0.9300	С29—Н29	0.9300
C14—N1	1.332 (6)	C18—N2	1.341 (5)
C14—H14	0.9300	C18—H18	0.9300
C20—C21	1.380 (6)	C17—N2	1.339 (5)
C20—H20	0.9300	C17—H17	0.9300
C21—H21	0.9300	C27—N4	1.342 (6)
C4—O1	1.368 (6)	C27—H27	0.9300
C4—C3	1.384 (8)	C28—N4	1.326 (6)
C3—C2	1.376 (10)	C28—H28	0.9300
С3—Н3	0.9300	N2—Cu1 ⁱⁱ	1.913 (3)
C7—O1	1.443 (6)	N4—Cu2 ⁱⁱ	1.931 (3)
С7—С8	1.519 (6)		
N2 ⁱ —Cu1—N1	161.82 (15)	С9—С6—Н6	121.3
N2 ⁱ —Cu1—O2	100.44 (13)	C3—C2—C9	119.8 (6)
N1—Cu1—O2	96.62 (13)	С3—С2—Н2	120.1
N3—Cu2—N4 ⁱ	160.65 (15)	С9—С2—Н2	120.1
N3—Cu2—O3	100.74 (14)	C14—N1—C10	116.6 (3)
N4 ⁱ —Cu2—O3	97.66 (13)	C14—N1—Cu1	125.6 (3)
C20—N3—C24	116.1 (4)	C10—N1—Cu1	117.8 (3)
C20—N3—Cu2	126.3 (3)	O2—C8—O3	127.5 (4)

C24 N2 C-2	117.4.(2)	02 68 67	1100(4)
C24—N3—Cu2	11/.4 (3)	02 - 08 - 07	118.0 (4)
C21-C22-C23	116.1 (4)	03-08-07	114.6 (4)
C21—C22—C25	122.9 (4)	C8—O2—Cul	143.1 (3)
C23-C22-C25	120.9 (4)	$C4 \rightarrow O1 \rightarrow C7$	118.3 (4)
C14—C13—C12	120.2 (4)	C8—O3—Cu2	114.4 (3)
C14—C13—H13	119.9	04—N6—05	123.0 (10)
С12—С13—Н13	119.9	04—N6—06	119.4 (8)
C6—C5—C4	122.1 (5)	O5—N6—O6	117.6 (8)
C6—C5—Cl2	117.9 (4)	C24—C23—C22	120.1 (4)
C4—C5—Cl2	120.0 (4)	C24—C23—H23	119.9
C11—C12—C13	115.9 (4)	С22—С23—Н23	119.9
C11—C12—C15	121.5 (4)	C26—C25—C29	115.9 (4)
C13—C12—C15	122.6 (4)	C26—C25—C22	122.8 (4)
N3—C24—C23	123.8 (4)	C29—C25—C22	121.2 (4)
N3—C24—H24	118.1	C16—C15—C19	116.1 (4)
C23—C24—H24	118.1	C16-C15-C12	122.2 (4)
N1—C10—C11	123.0 (4)	C19—C15—C12	121.7 (4)
N1—C10—H10	118.5	C25—C26—C27	120.4 (4)
C11-C10-H10	118.5	C25—C26—H26	119.8
C10-C11-C12	120.8 (4)	C27—C26—H26	119.8
C10-C11-H11	119.6	C18—C19—C15	120.9 (4)
C12-C11-H11	119.6	С18—С19—Н19	119.6
N1—C14—C13	123.4 (4)	С15—С19—Н19	119.6
N1-C14-H14	118.3	C15-C16-C17	120.2 (4)
C13-C14-H14	118.3	C15-C16-H16	119.9
N3—C20—C21	123.5 (4)	С17—С16—Н16	119.9
N3—C20—H20	118.2	C28—C29—C25	120.6 (4)
C21—C20—H20	118.2	С28—С29—Н29	119.7
C20—C21—C22	120.3 (4)	С25—С29—Н29	119.7
C20-C21-H21	119.8	N2-C18-C19	122.8 (4)
C22—C21—H21	119.8	N2	118.6
O1—C4—C5	116.4 (4)	C19-C18-H18	118.6
O1—C4—C3	124.4 (5)	N2-C17-C16	123.7 (4)
C5—C4—C3	119.2 (6)	N2-C17-H17	118.1
C2—C3—C4	119.9 (7)	С16—С17—Н17	118.1
С2—С3—Н3	120.0	N4—C27—C26	123.2 (4)
С4—С3—Н3	120.0	N4—C27—H27	118.4
O1—C7—C8	112.6 (4)	С26—С27—Н27	118.4
O1—C7—H7A	109.1	N4—C28—C29	123.6 (4)
С8—С7—Н7А	109.1	N4—C28—H28	118.2
O1—C7—H7B	109.1	С29—С28—Н28	118.2
С8—С7—Н7В	109.1	C17—N2—C18	116.1 (4)
H7A—C7—H7B	107.8	C17—N2—Cu1 ⁱⁱ	120.6 (3)
C2—C9—C6	121.7 (6)	C18—N2—Cu1 ⁱⁱ	123.3 (3)
C2—C9—Cl1	121.2 (6)	C28—N4—C27	116.2 (4)
C6—C9—C11	117.1 (6)	C28—N4—Cu2 ⁱⁱ	123.5 (3)
C5—C6—C9	117.3 (6)	C27—N4—Cu2 ⁱⁱ	120.3 (3)
С5—С6—Н6	121.3		

Symmetry codes: (i) x+1, -y+1/2, z+1/2; (ii) x-1, -y+1/2, z-1/2.

Fig. 2

